Interface Synthesis of FePO4 with Different Morphologies and Effect of Morphology on the Electrochemical Performance of LiFePO4/C
نویسندگان
چکیده
In our work, interface synthesis method was put forward to prepare FePO4 with different morphologies, and the effect of morphology on the preparation and electrochemical performance of LiFePO4/C was investigated. The results showed that the morphology of FePO4 was amorphous and monoclinic at the treatment temperatures of 30 °C and 80 °C, respectively. LiFePO4/C prepared from two crystal precursors were both hemispherical hollow with an olivine crystal structure. LiFePO4/C produced from the monoclinic structured precursor exhibited smaller-sized morphology and better electrochemical performance, and its discharge capacities were 155.9 mA h g−1 and 141.8 mA h g−1 at the rates of 0.1 C and 1 C, respectively. After 150 cycles, its capacity retention was about 97.8 % and 95.1 % at 0.1 C and 1 C, respectively.
منابع مشابه
Excellent Temperature Performance of Spherical LiFePO4/C Composites Modified with Composite Carbon and Metal Oxides
Nanosized spherical LiFePO4/C composite was synthesized from nanosized spherical FePO4 ·2H2O, Li2C2O4, aluminum oxide, titanium oxide, oxalic acid, and sucrose by binary sintering process. The phases and morphologies of LiFePO4/C were characterized using SEM, TEM, CV, EIS, EDS, and EDX as well as charging and discharging measurements. The results showed that the as-prepared LiFePO4/C composite ...
متن کاملThe Effect of LiFePO4 Coating on Electrochemical Performance of LiMn2O4 Cathode Material
LiMn2O4 spinel cathode materials have been successfully synthesized by solid-state reaction. Surface of these particles were modified by nanostructured LiFePO4 via sol gel dip coating method. Synthesized products were characterized by thermally analyzed by Thermogravimetric and Differential Thermal Analysis(TG/DTA), X-Ray Diffraction (XRD), Scanning Electron...
متن کاملControllable synthesis, morphology evolution and electrochemical properties of LiFePO4 cathode materials for Li-ion batteries.
Monodispersed LiFePO4 nanocrystals with diverse morphologies were successfully synthesized via a mild and controllable solvothermal approach with a mixture of ethylene glycol and oleic acid as the solvent. Morphology evolution of LiFePO4 nanoparticles from nanoplates to nanorods can be simply realized by varying the volume ratio of oleic acid to ethylene glycol. Moreover, the mechanism of compe...
متن کاملThe Determining Factors for High Rate Performance
The Li+ ion diffusion coefficient of lithium iron phosphate LiFePO4 cathode materials should not be measured by the standard method because there is no composition variation but the movement of the LiFePO4/FePO4 interface during Li insertion/ extraction. A method to measure the intrinsic electronic and ionic conductivity of mixed conductive LiFePO4 was reported, for the first time, based on the...
متن کاملSynthesis of LiFePO4/C composite as a cathode material for lithium-ion battery by a novel two-step method
In this study, LiFePO4/C is synthesized via a novel two-step method. The first step is the synthesis of nano-sized intermediate FePO4 by a modified sol–gel method. A fast and full combustion procedure is involved to remove carbon and control the size of the intermediate particles. The second step is to prepare LiFePO4/C by combining solid-state reaction with controllable carbon coating. This tw...
متن کامل